Incorrect Calculation
The product performs a calculation that generates incorrect or unintended results that are later used in security-critical decisions or resource management.
Description
When product performs a security-critical calculation incorrectly, it might lead to incorrect resource allocations, incorrect privilege assignments, or failed comparisons among other things. Many of the direct results of an incorrect calculation can lead to even larger problems such as failed protection mechanisms or even arbitrary code execution.
Demonstrations
The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.
Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.
Example One
The following image processing code allocates a table for images.
This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the calculation determining the size of the list will eventually overflow (CWE-190). This will result in a very small list to be allocated instead. If the subsequent code operates on the list as if it were num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
Example Two
This code attempts to calculate a football team's average number of yards gained per touchdown.
The code does not consider the event that the team they are querying has not scored a touchdown, but has gained yardage. In that case, we should expect an ArithmeticException to be thrown by the JVM. This could lead to a loss of availability if our error handling code is not set up correctly.
Example Three
This example attempts to calculate the position of the second byte of a pointer.
In this example, second_char is intended to point to the second byte of p. But, adding 1 to p actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms). If the resulting memory address is read, this could potentially be an information leak. If it is a write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer overflow. Note that the above code may also be wrong in other ways, particularly in a little endian environment.
See Also
Weaknesses in this category are related to incorrect calculation.
Weaknesses in this category are related to the CISQ Quality Measures for Security. Presence of these weaknesses could reduce the security of the software.
Weaknesses in this category are related to the CISQ Quality Measures for Reliability. Presence of these weaknesses could reduce the reliability of the software.
This view (slice) covers all the elements in CWE.
This view outlines the SMM representation of the Automated Source Code Data Protection Measurement specifications, as identified by the Consortium for Information & So...
CWE entries in this view (graph) may be used to categorize potential weaknesses within sources that handle public, third-party vulnerability information, such as the N...
Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.