Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

The software uses a more complex mechanism than necessary, which could lead to resultant weaknesses when the mechanism is not correctly understood, modeled, configured, implemented, or used.


Security mechanisms should be as simple as possible. Complex security mechanisms may engender partial implementations and compatibility problems, with resulting mismatches in assumptions and implemented security. A corollary of this principle is that data specifications should be as simple as possible, because complex data specifications result in complex validation code. Complex tasks and systems may also need to be guarded by complex security checks, so simple systems should be preferred.


The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.

Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.

Example One

The IPSEC specification is complex, which resulted in bugs, partial implementations, and incompatibilities between vendors.

Example Two

HTTP Request Smuggling (CWE-444) attacks are feasible because there are not stringent requirements for how illegal or inconsistent HTTP headers should be handled. This can lead to inconsistent implementations in which a proxy or firewall interprets the same data stream as a different set of requests than the end points in that stream.

See Also

SFP Secondary Cluster: Architecture

This category identifies Software Fault Patterns (SFPs) within the Architecture cluster.

Comprehensive CWE Dictionary

This view (slice) covers all the elements in CWE.

Weaknesses without Software Fault Patterns

CWE identifiers in this view are weaknesses that do not have associated Software Fault Patterns (SFPs), as covered by the CWE-888 view. As such, they represent gaps in...

Weaknesses Introduced During Implementation

This view (slice) lists weaknesses that can be introduced during implementation.

Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.