Addition of Data Structure Sentinel

The accidental addition of a data-structure sentinel can cause serious programming logic problems.


Data-structure sentinels are often used to mark the structure of data. A common example of this is the null character at the end of strings or a special sentinel to mark the end of a linked list. It is dangerous to allow this type of control data to be easily accessible. Therefore, it is important to protect from the addition or modification of sentinels.


The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.

Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.

Example One

The following example assigns some character values to a list of characters and prints them each individually, and then as a string. The third character value is intended to be an integer taken from user input and converted to an int.

char *foo;
printf("%c %c %c %c %c \n",foo[0],foo[1],foo[2],foo[3],foo[4]);

The first print statement will print each character separated by a space. However, if a non-integer is read from stdin by getc, then atoi will not make a conversion and return 0. When foo is printed as a string, the 0 at character foo[2] will act as a NULL terminator and foo[3] will never be printed.

See Also

SFP Secondary Cluster: Design

This category identifies Software Fault Patterns (SFPs) within the Design cluster.

CERT C++ Secure Coding Section 07 - Characters and Strings (STR)

Weaknesses in this category are related to rules in the Characters and Strings (STR) section of the CERT C++ Secure Coding Standard. Since not all rules map to specifi...

Data Neutralization Issues

Weaknesses in this category are related to the creation or neutralization of data using an incorrect format.

Comprehensive CWE Dictionary

This view (slice) covers all the elements in CWE.

Weaknesses without Software Fault Patterns

CWE identifiers in this view are weaknesses that do not have associated Software Fault Patterns (SFPs), as covered by the CWE-888 view. As such, they represent gaps in...

Weaknesses Introduced During Implementation

This view (slice) lists weaknesses that can be introduced during implementation.

Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.