Reliance on Data/Memory Layout

The software makes invalid assumptions about how protocol data or memory is organized at a lower level, resulting in unintended program behavior.


When changing platforms or protocol versions, in-memory organization of data may change in unintended ways. For example, some architectures may place local variables A and B right next to each other with A on top; some may place them next to each other with B on top; and others may add some padding to each. The padding size may vary to ensure that each variable is aligned to a proper word size.

In protocol implementations, it is common to calculate an offset relative to another field to pick out a specific piece of data. Exceptional conditions, often involving new protocol versions, may add corner cases that change the data layout in an unusual way. The result can be that an implementation accesses an unintended field in the packet, treating data of one type as data of another type.


The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.

Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.

Example One

In this example function, the memory address of variable b is derived by adding 1 to the address of variable a. This derived address is then used to assign the value 0 to b.

void example() {
  char a;
  char b;
  *(&a + 1) = 0;

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes between them because they are aligned on 32-bit boundaries.

See Also

SFP Secondary Cluster: Design

This category identifies Software Fault Patterns (SFPs) within the Design cluster.

Data Neutralization Issues

Weaknesses in this category are related to the creation or neutralization of data using an incorrect format.

Comprehensive CWE Dictionary

This view (slice) covers all the elements in CWE.

Weaknesses without Software Fault Patterns

CWE identifiers in this view are weaknesses that do not have associated Software Fault Patterns (SFPs), as covered by the CWE-888 view. As such, they represent gaps in...

Weaknesses Introduced During Implementation

This view (slice) lists weaknesses that can be introduced during implementation.

Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.