CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations

The CPU is not configured to provide hardware support for exclusivity of write and execute operations on memory. This allows an attacker to execute data from all of memory.


Description

CPUs provide a special bit that supports exclusivity of write and execute operations. This bit is used to segregate areas of memory to either mark them as code (instructions, which can be executed) or data (which should not be executed). In this way, if a user can write to a region of memory, the user cannot execute from that region and vice versa. This exclusivity provided by special hardware bit is leveraged by the operating system to protect executable space. While this bit is available in most modern processors by default, in some CPUs the exclusivity is implemented via a memory-protection unit (MPU) and memory-management unit (MMU) in which memory regions can be carved out with exact read, write, and execute permissions. However, if the CPU does not have an MMU/MPU, then there is no write exclusivity. Without configuring exclusivity of operations via segregated areas of memory, an attacker may be able to inject malicious code onto memory and later execute it.

Demonstrations

The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.

Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.

Example One

MCS51 Microcontroller (based on 8051) does not have a special bit to support write exclusivity. It also does not have an MMU/MPU support. The Cortex-M CPU has an optional MPU that supports up to 8 regions.

The optional MPU is not configured.

If the MPU is not configured, then an attacker will be able to inject malicious data into memory and execute it.

See Also

Core and Compute Issues

Weaknesses in this category are typically associated with CPUs, Graphics, Vision, AI, FPGA, and microcontrollers.

Comprehensive CWE Dictionary

This view (slice) covers all the elements in CWE.

Weaknesses without Software Fault Patterns

CWE identifiers in this view are weaknesses that do not have associated Software Fault Patterns (SFPs), as covered by the CWE-888 view. As such, they represent gaps in...

Weaknesses Introduced During Design

This view (slice) lists weaknesses that can be introduced during design.


Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.