Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Description
Typically, this can allow attackers to read sensitive information from other memory locations or cause a crash. A crash can occur when the code reads a variable amount of data and assumes that a sentinel exists to stop the read operation, such as a NUL in a string. The expected sentinel might not be located in the out-of-bounds memory, causing excessive data to be read, leading to a segmentation fault or a buffer overflow. The product may modify an index or perform pointer arithmetic that references a memory location that is outside of the boundaries of the buffer. A subsequent read operation then produces undefined or unexpected results.
Demonstrations
The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.
Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.
Example One
In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method
However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below.
See Also
Weaknesses in this category are related to memory safety.
Weaknesses in this category are related to the "Frail Security in Protocols" category from the SEI ETF "Categories of Security Vulnerabilities in ICS" as published in ...
Weaknesses in this category are related to the handling of memory buffers within a software system.
This view (slice) covers all the elements in CWE.
CWE entries in this view are listed in the 2023 CWE Top 25 Most Dangerous Software Weaknesses.
CWE entries in this view are listed in the 2022 CWE Top 25 Most Dangerous Software Weaknesses.
Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.