Sensitive Non-Volatile Information Not Protected During Debug

Access to security-sensitive information stored in fuses is not limited during debug.


Description

Several security-sensitive values are programmed into fuses to be used during early-boot flows or later at runtime. Examples of these security-sensitive values include root keys, encryption keys, manufacturing-specific information, chip-manufacturer-specific information, and original-equipment-manufacturer (OEM) data. After the chip is powered on, these values are sensed from fuses and stored in temporary locations such as registers and local memories. These locations are typically access-control protected from untrusted agents capable of accessing them. Even to trusted agents, only read-access is provided. However, these locations are not blocked during debug operations, allowing a user to access this sensitive information.

Demonstrations

The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.

Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.

Example One

Sensitive manufacturing data (such as die information) are stored in fuses. When the chip powers on, these values are read from the fuses and stored in microarchitectural registers. These registers are only given read access to trusted software running on the core. Untrusted software running on the core is not allowed to access these registers.

All microarchitectural registers in this chip can be accessed through the debug interface. As a result, even an untrusted debugger can access this data and retrieve sensitive manufacturing data.
Registers used to store sensitive values read from fuses should be blocked during debug. These registers should be disconnected from the debug interface.

See Also

Comprehensive Categorization: Access Control

Weaknesses in this category are related to access control.

Debug and Test Problems

Weaknesses in this category are related to hardware debug and test interfaces such as JTAG and scan chain.

Comprehensive CWE Dictionary

This view (slice) covers all the elements in CWE.

Weaknesses Introduced During Implementation

This view (slice) lists weaknesses that can be introduced during implementation.

Weaknesses Introduced During Design

This view (slice) lists weaknesses that can be introduced during design.


Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.