On-Chip Debug and Test Interface With Improper Access Control
The chip does not implement or does not correctly perform access control to check whether users are authorized to access internal registers and test modes through the physical debug/test interface.
Description
A device's internal information may be accessed through a scan chain of interconnected internal registers, usually through a JTAG interface. The JTAG interface provides access to these registers in a serial fashion in the form of a scan chain for the purposes of debugging programs running on a device. Since almost all information contained within a device may be accessed over this interface, device manufacturers typically insert some form of authentication and authorization to prevent unintended use of this sensitive information. This mechanism is implemented in addition to on-chip protections that are already present.
If authorization, authentication, or some other form of access control is not implemented or not implemented correctly, a user may be able to bypass on-chip protection mechanisms through the debug interface.
Sometimes, designers choose not to expose the debug pins on the motherboard. Instead, they choose to hide these pins in the intermediate layers of the board. This is primarily done to work around the lack of debug authorization inside the chip. In such a scenario (without debug authorization), when the debug interface is exposed, chip internals are accessible to an attacker.
Demonstrations
The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.
Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.
Example One
A home, WiFi-router device implements a login prompt which prevents an unauthorized user from issuing any commands on the device until appropriate credentials are provided. The credentials are protected on the device and are checked for strength against attack.
JTAG is useful to chip and device manufacturers during design, testing, and production and is included in nearly every product. Without proper authentication and authorization, the interface may allow tampering with a product.
Example Two
The following example code is a snippet from the JTAG wrapper module in the RISC-V debug module of the HACK@DAC'21 Openpiton SoC [REF-1355]. To make sure that the JTAG is accessed securely, the developers have included a primary authentication mechanism based on a password.
The developers employed a Finite State Machine (FSM) to implement this authentication. When a user intends to read from or write to the JTAG module, they must input a password.
In the subsequent state of the FSM module, the entered password undergoes Hash-based Message Authentication Code (HMAC) calculation using an internal HMAC submodule. Once the HMAC for the entered password is computed by the HMAC submodule, the FSM transitions to the next state, where it compares the computed HMAC with the expected HMAC for the password.
If the computed HMAC matches the expected HMAC, the FSM grants the user permission to perform read or write operations on the JTAG module. [REF-1352]
However, in the given vulnerable part of the code, the JTAG module has not defined a limitation for several continuous wrong password attempts. This omission poses a significant security risk, allowing attackers to carry out brute-force attacks without restrictions.
Without a limitation on wrong password attempts, an attacker can repeatedly guess different passwords until they gain unauthorized access to the JTAG module. This leads to various malicious activities, such as unauthorized read from or write to debug module interface.
To mitigate the mentioned vulnerability, developers need to implement a restriction on the number of consecutive incorrect password attempts allowed by the JTAG module, which can achieve by incorporating a mechanism that temporarily locks the module after a certain number of failed attempts.[REF-1353][REF-1354]
Example Three
The example code below is taken from the JTAG access control mechanism of the HACK@DAC'21 buggy OpenPiton SoC [REF-1364]. Access to JTAG allows users to access sensitive information in the system. Hence, access to JTAG is controlled using cryptographic authentication of the users. In this example (see the vulnerable code source), the password checker uses HMAC-SHA256 for authentication. It takes a 512-bit secret message from the user, hashes it using HMAC, and compares its output with the expected output to determine the authenticity of the user.
The vulnerable code shows an incorrect implementation of the HMAC authentication where it only uses the least significant 32 bits of the secret message for the authentication (the remaining 480 bits are hard coded as zeros). As a result, the system is susceptible to brute-force attacks on the access control mechanism of JTAG, where the attacker only needs to determine 32 bits of the secret message instead of 512 bits.
To mitigate this issue, remove the zero padding and use all 512 bits of the secret message for HMAC authentication [REF-1365].
See Also
Weaknesses in this category are related to access control.
Weaknesses in this category are related to hardware debug and test interfaces such as JTAG and scan chain.
This view (slice) covers all the elements in CWE.
CWE entries in this view are listed in the 2021 CWE Most Important Hardware Weaknesses List, as determined by the Hardware CWE Special Interest Group (HW CWE SIG).
This view (slice) lists weaknesses that can be introduced during implementation.
Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.